

TECHNICAL STUDY REPORT MCI 6043

Harriet F. (Rae) Beaubien

OBJECTS

Small samples (41) from 32 metal objects, excavated by Smithsonian Tropical Research Institute (STRI) archaeological staff – 31 from Cerro Juan Díaz and 1 from Abrigo Aclosa, in Panamá
Cerro Juan Díaz: M-2, 3, 4, 5, 6, 7, 9, 11, 13, 14, 15, 24, 27, 28-1, 28-2, 28-5, 35-1, 35-2, 35-3, 35-7, 42, 43, 54, 56, 59, 67, 68, 72, 73, 206, and CL-3-45 [MIT 5136]
Abrigo Aclosa: AA-01

CULTURAL AREA

Pre-Columbian, possibly Panamanian manufacture

MATERIALS/TECHNIQUES OF MANUFACTURE

Gold alloys, copper alloys and iron pyrite (iron sulfide)

REQUESTOR:

Smithsonian Tropical Research Institute (STRI), Panama City, Panamá

 Dr. Richard G. Cooke, STRI Archaeologist W tel: (507) 212-8747; cooker@si.edu

REQUEST

Information about alloy composition, as part of preliminary research on the origins and development of gold-working in Panamá

MCI STAFF/COLLABORATORS

- Harriet F. (Rae) Beaubien, Senior Conservator project coordinator
- Roland H. Cunningham, Senior Conservator/Analyst scanning electron microscopy (SEM), with energy dispersive X-ray analysis (EDS), for imaging and elemental information (semi-quantitative)
- R. Jeff Speakman, Head of Technical Studies; formerly MURR Scientist laser ablationinductively coupled plasma-mass spectrometry (LA-ICP-MS), for elemental information (quantitative), at the University of Missouri-Columbia Reactor Research Center (MURR)
- Melvin J. Wachowiak, Senior Conservator photomicrography
- Karla Muñoz Alcocer, Conservation contractor; formerly MCI Program Specialist principal contact, sampling, photographs
- Aaron N. Shugar, MCI Research Associate X-ray fluorescence spectroscopy (portable XRF), for elemental information (semi-quantitative)

REQUEST date/approval: 29 March 2006 / 24 April 2006 **REPORT date**: 5 October 2006 (revised 8 May 2007)

SUMMARY

Although numerous pre-Columbian gold artifacts have been found in Panama, most were long assumed to have been produced in Colombia and Ecuador, neighboring regions with ample archaeological evidence of metallurgy, including mining sites, manufacturing tools and finished products. However, iconographic studies, ethnohistoric records and, more recently, archaeological evidence of metallurgical activity suggest that Panama had developed its own gold-working tradition in pre-Columbian times.

Reconstructing the origins and development of Panamanian gold-working requires a nuanced understanding of key technical aspects of the objects themselves, one of the most important of which is alloy composition. This study focused on a group of 39 metal artifacts, 38 of which were excavated at the site of Cerro Juan Díaz, an important village and funerary precinct in the Azuero Peninsula. The study group included 18 gold and gilded artifacts – one of the largest number found at a single site in Panama.

Tiny samples from 17 of the sampled metal objects were analyzed using scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDS) to identify major and minor elements present. The EDS data were useful in guiding a second round of analyses using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), carried out on 25 of the sampled metal

objects. Quantitative information was collected on selected elements – gold, silver, copper, iron, manganese, nickel, zinc and osmium (the latter included as it has been found in gold of Ecuadoran and southern Colombian manufacture). Of these, only gold, silver, copper and iron were found.

The very good correlation between the findings from EDS and ICP techniques allowed the gold alloys to be provisionally sorted into the following general categories.

- *Gold (very high) with silver and copper* 4 gold sheet fragments, 5 tubular beads and 1 ring. The sheet fragments were similar in composition, with silver>copper.
- *Gold and copper (both mid-range), varying silver* 4 tubular beads, 1 ring, 1 half-disk and 1 flat figurine fragment.

• *Copper (very high) with gilding* – 2 copper alloy figurines (cast), with surface gilding traces.

Analyses of one additional sample highlighted the importance of selecting appropriate locations for sampling (e.g. from technologically informative and not overly corroded areas), and of examining not just surface composition but also the bulk composition – especially if lamination or surface depletion techniques are used, both well known from previous studies of pre-Columbian metal-working. X-ray fluorescence analysis (XRF) of the sample's outer surface indicated a copper-gold alloy, but a more complex picture emerged when the sample was mounted as a polished cross-section and analyzed by SEM-EDS. Gold-rich phases were detected in the "islands," surrounded by a copper-rich phase. Surface zones at the top and bottom of the sample displayed a different composition, with what appeared to be an extremely thin gold outermost layer.

Further technical investigation of gold artifacts from Panama is warranted. This should include detailed visual examination, non-invasive surface testing (such as with XRF analysis), and a thoughtful sampling strategy for a more in-depth analytical study.

OVERVIEW OF MCI ANALYSES

▶ In May 2006 at STRI, 38 objects excavated from the Panamanian sites of Cerro Juan Díaz (37) and Abrigo Aclosa (1) were examined, photographed and sampled by K. Muñoz Alcocer (May 2006). Of these, 31 objects were selected for sampling and either one or two tiny pieces were removed on May 16, for a total of 40 samples. Most were pieces taken from edges (at breaks where possible), some were powder (corrosion) samples, and some were taken from interior material, possibly not the metal itself. These samples were brought to MCI in May 2006. Another gold sample (CL-3-45), previously removed from another object excavated at CJD, was brought to MCI by Muñoz in June 2006. The comprehensive list of the objects, including thumbnail photographs, is provided in *Appendix A*; data from all analytical procedures are also summarized (compiled by Muñoz and Beaubien).

► At MCI, SEM-EDS (scanning electron microscopy, coupled with energy-dispersive X-ray spectroscopy) was carried out by R. Cunningham (May-June 2006); 19 samples (27 spots) were analyzed from 17 objects. The chart in *Appendix A* includes the general quantitative ranking of elements, provided by Cunningham. His summary is included as *Appendix B*.

► At MURR, LA-ICP-MS (laser ablation inducively coupled plasma spectroscopy-mass spectrometry) was carried out by R.J. Speakman (July 2006); 29 samples were analyzed from 25 objects. The chart in *Appendix A* includes data provided by Speakman. His full report is included in *Appendix C*: Robert J. Speakman, Laser Ablation ICP-MS Analysis of Cu and Au Alloys from Cerro Juan Díaz, Panama (report dated July 14, 2006).

At MCI, XRF (X-ray fluorescence spectroscopy) was carried out by A. Shugar on both sides of the CL-3-45 sample (13 July 2006); three readings were taken on one side and two on the other. His data are included in *Appendix D*.

► At MCI, SEM-EDS was carried out by R. Cunningham (August 2006) on the CL-3-45 sample. A portion was mounted in cross-section; the matrix, bright phase "islands" and selected inclusions were analyzed by EDS and imaged in secondary and backscatter modes. Additional data were collected using two other SEM-EDS systems for comparison. Key components of the full report are included in *Appendix E*.

► At MCI, photomicrographs were taken of the CL-3-45 sample by M. Wachowiak, after it had been embedded and polished. These are included in *Appendix F*, along with Shugar's observations, notating several of the images of the mounted sample after etching.

PRELIMINARY OBSERVATIONS

EDS and XRF	1	CJD CL-3-45
ICP only	4	CJD M 27, 35(-3,-7), 206
Both EDS and ICP	13	CJD M 4, 5, 7, 11, 13, 14, 28(-1,-2), 35(-1, 2), 54, 67, AA -01
Sampled and not analyzed / probably gold	2	CJD M 6, 28(-5)
Not sampled / probably gold	7	CJD M 28 (-3, -4, -6, -7), 38 (-4,-5,-6)

Gold and gilded objects

The very good correlation between the findings from EDS and ICP techniques allowed the

gold/gilded samples to be further sorted into the following provisional categories, listed with source object type.

• Gold (very high % by ICP), with silver and copper

4 gold sheet fragments [**CJD M** 4, 7, 13, 14], 5 tubular beads [**CJD M** 5, 11, 35(-3, -7), 67] and 1 ring [**CJD M** 27]. All 4 sheet fragments showed similar alloy compositions, with more silver compared to copper, suggesting the possibility of an alloy preference for production of this kind of item.

Gold and copper (both mid-range % by ICP), with varying amounts of silver
 4 tubular beads [CJD M 28(-1, -2), 35(-1,-2)], 1 ring [CJD M 206], 1 half-disk [AA-01], and 1 flat figurine fragment [CJD CL-3-45], the latter on the basis of XRF only.

• Copper (very high % by ICP) with gilding

2 copper alloy figurines with surface gilding traces [**CJD M** 54, 73], both formed by casting. No elements were detected by EDS that might have shed light on the gilding methods (such as mercury, for "fire gilding").

Several examples highlighted the importance of distinguishing surface composition and bulk composition. This is particularly the case when lamination, depletion gilding and other intentional surface alteration methods are among the technological possibilities; these are all well known from previous studies of pre-Columbian metal-working. Surface and bulk compositional differences might be readily apparent in the case of gilded copper alloy objects (as in the two examples in this study), but unfortunately no elements were detected by EDS that might have shed light on the particular gilding methods used (such as mercury, for fire gilding).

In the case of the CL-3-45 sample, X-ray fluorescence analysis (XRF) of its outer surfaces indicated a copper-gold-silver alloy, but a more complex picture emerged when the sample was mounted in cross-section (embedded, polished, and later etched), and analyzed by SEM-EDS. Gold-rich phases were detected in the "islands," surrounded by a copper-rich phase. Surface zones at the top and bottom of the sample, with what appeared to be an extremely thin gold outermost layer, were also visible. Although not analysed by EDS, the thin gold-rich layers on the outermost surfaces along with the zone of voids immediately below were interpreted by Shugar to be evidence of a traditional depletion gilding technique, in which a *tumbaga* alloy (gold-copper-silver) is acid-treated to dissolve away all but the gold components at the surface.

Further technical investigation of gold artifacts from Panama is clearly warranted. This should include detailed visual examination, non-invasive surface testing (such as with XRF analysis), and a thoughtful sampling strategy for a more in-depth analytical study. In addition to technological information, analysis of samples may provide information about provenience. In the current study, 8 elements were measured during ICP analyses – gold, silver, copper, iron, manganese, nickel, zinc and osmium. Osmium was included as an element of interest because it has been found in gold of Ecuadoran and southern Colombian manufacture, according to R. Cooke. While only gold, silver, copper and iron were found in this case, particular suites of elements may enable source distinctions to be made.

EDS only	0						
ICP only	3	CJD M 15, 42, 56					
Both EDS and ICP	3	CJD M 9, 24, 68					
Sampled and not analyzed / probably gold	3	CJD M 43, 59, 72					
Not sampled / probably gold	0						

Copper alloy objects (excluding the 2 listed in the section above)

Four of the objects in this group are chisels or other tools [CJD M 24, 42, 56, 68], and two are

rings [**CJD M** 9, 15]. One item in each group produced inconsistent results; both were determined by appearance and by EDS to be copper, but analyzed by ICP as iron (chisel) or gold (ring). These conflicting results may have been a result of sampling.

Iron-rich objects

EDS only	1	CJD M 3
ICP only	1	CJD M 2
Both EDS and ICP	0	
Sampled and not analyzed / probably gold	0	
Not sampled / probably gold	0	

Both of these objects were beads, described as being made of the mineral pyrite (iron sulfide).

Reports and all supporting data are also archived at the Museum Conservation Institute, in Suitland, MD, under MCI 6043.

Proper credit must be given to MCI and to the scientist(s)/conservator(s) involved when referring to this work.

Inventory of Metal Objects from Panama Karla Muñoz Alcocer and Harriet F. Beaubien

Panamá (Gold Project					
STRI Cat.No.	PROVENIENCE	OBJECT LABEL [Description] Condition Notes	MCI 6043 (May 2006) PHOTOS	MCI 6043 (May 2006) SAMPLES	MCI 6043 (July 2006) LA-ICP-MS %Au-Ag-Cu-Fe	MCI 6043 (May-June, Aug 2006) SEM-EDS
M-2	Cerro Juan Díaz	Pirita de cobre [Bead/pyrite (copper)] reddish (Cu alloy?)	M-Z Pietta De 10818	S01 small piece and powder from edge	0.00.00.0 100.0	
M-3	Cerro Juan Díaz	Cuenta de pirita cuadrado [Bead/pyrite, square] reddish (Cu alloy?)	M EL EL OL M	S01 two small pieces		Fe-Al
M-4	Cerro Juan Díaz	Oro laminado [Sheet (gold)] appears gold, uncorroded	81 21 91 91 91 91 91 81 17-4 Oro caminado	S01 one piece and powder from edge at end S02 small piece from edge at midpoint	94.5 3.91.30.3 93.6 4.01.90.5	Au-Si-Al-Fe (gold) Al-Fe-Ti-Au (corrosion)
M-5	Cerro Juan Díaz	Cuenta tubular de oro [Bead, tubular (gold)] appears gold, uncorroded	M-ST CUCATZ M-ST CUCATZ M-St CucaTZ	S01 piece from end	85.7 10.73.30.3	Au-Al
M-6	Cerro Juan Díaz	Alambre de metal [Wire (metal)] reddish/gold, uncorroded	BL 21 91 51 91 M-6 Alambre 75 Mitha	S01 piece from end		sample sent out before EDS
M-7	Cerro Juan Díaz	Lamina de oro [Sheet (gold)] appears gold, uncorroded	91 91 91 92 11 01 (M-7) Lamina de 070	S01 large piece and powder from edge	88.9 8.32.20.6	Au-Ag-Cu-Ti-Al
M-9	Cerro Juan Díaz	Sortija con piedra de concha (quizas colonial) [Ring, (possibly colonial)] green corroded, with frags	MA SELITA	S01 one of loose frags: large piece	90.4 5.93.50.3	Cu-Al-Fe-Zn-Pb-Ti (br/gr) Fe-Cu-Ti-Al (brown side) Cu-Fe-Zn-Pb-Al (green side)
M-11	Cerro Juan Díaz	Cuenta [Bead] appears gold, uncorroded	81 41 91 91 M-11 CUENTA	S01 one large piece from edge	88.0 10.80.40.8	Au-Ag-Al-Cu
M-13	Cerro Juan Díaz	Gold sheathing {Sheet/wrapping] 2 fragments; appears gold, uncorroded	LE 91 91 91 91 CL 21	S01 sm frag:from broken edge S02 lg frag: from broken edge	90.5 6.92.30.4 93.3 3.82.70.1	Au-Al-Ti Au-Ag-Al-Cu-Fe-C-Fe-Ca
M-14	Cerro Juan Díaz	Gold sheathing/Envoltura [Sheet/wrapping] appears gold, uncorroded		S01 large piece from broken edge	90.4 8.60.40.5	Au-Al-Ti
M-15	Cerro Juan Díaz	Curved Cincel [Chisel] reddish (strippd Cu alloy?)		S01 from center curve S02 from inside edge	0.50.3 99.1 0.2	

M-24	Cerro Juan Díaz	Cincel ^[Chisel] reddish (strippd Cu alloy?)	5.7.7.7.7.7.7.7.7.1.1.1.1. 527	S01 oxidized powder mid	0.00.07.4 92.5	Al-Cu-Fe-Ti (brown powder) Cu-Al-Co-Ti (red particles) Cu-Pb-Al-Fe (green particles)
M-27	Cerro Juan Díaz	Argolla nariguera [Ring, nose] appears gold, uncorroded	M-23 A Cartilo MARKINGER	S01 from open end	93.4 6.30.10.2	
M-28-1	Cerro Juan Díaz	Cuenta tubular [Bead, tubular] appears gold, uncorroded		S01 from end	50.64.744.50.3	Au-Cu-Ag-Ti
M-28-2	Cerro Juan Díaz	Cuenta tubular [Bead, tubular] appears gold, uncorroded	5	S01 from end	64.14.531.40.0	Au-Cu-Al-Ag
M-28-3	Cerro Juan Díaz	Cuenta tubular [Bead, tubular] appears gold, uncorroded	0			
M-28-4	Cerro Juan Díaz	Cuenta tubular [Bead, tubular] appears gold, uncorroded	5			
M-28-5	Cerro Juan Díaz	Cuenta tubular [Bead, tubular] appears gold, uncorroded		S01 from fold edge		
M-28-6	Cerro Juan Díaz	Cuenta tubular [Bead, tubular] appears gold, uncorroded	et with			
M-28-7	Cerro Juan Díaz	Cuenta tubular [Bead, tubular] appears gold, uncorroded				
M-35-1	Cerro Juan Díaz	Cuenta tubular [Bead, tubular] coppery-gold, uncorroded	5	S01 from inside at end	57.70.941.40.0	Cu-Au-Ag-Fe-Ti Al-Fe-Au-Cu-Ti-Ag (corrosion)
M-35-2	Cerro Juan Díaz	Cuenta tubular [Bead, tubular] appears gold, uncorroded	* = 3358	S01 from inside at end	71.00.828.20.1	Cu-Au-Al-Fe-Th-Ag
M-35-3	Cerro Juan Díaz	Cuenta tubular [Bead, tubular] appears gold, uncorroded		S01 from fold edge at end	87.2 7.73.31.7	sample sent out before EDS
M-35-4	Cerro Juan Díaz	Cuenta tubular [Bead, tubular] appears gold, uncorroded				
M-35-5	Cerro Juan Díaz	Cuenta tubular [Bead, tubular] appears gold, uncorroded	21 91 91 91			

M-35-6	Cerro Juan Díaz	Cuenta tubular	TATA T			
		[Bead, tubular]	8			
		appears gold, uncorroded	T			
M-35-7	Cerro Juan Díaz	Cuenta tubular		S01 from bend at end	87 0 7 44 31 4	
Wi 00 .		[Read tubular]				
		copperv-gold uncorroded	The second second			
14 40				004	<u> </u>	
M-42	Cerro Juan Diaz	Cincei		S01 piece from midpoint	0.80.3 98.8 0.2	
		[Chisel]	Mail Data			
		red-br (stripped Cu alloy?)		S02 powder near end		
M-43	Cerro Juan Díaz	Cincel gutteo	96 51 H CI CI II OI	S01 from "head" end		
		[Chisel]	M-113			
		coppery-gold, uncorroded	Cincel surfle O			
M-54	Cerro Juan Díaz	Twin crocodrilos	GI PI EI EI II OI	S01 sm frag: from back	21.11.2 77.6 0.1	Cu-Au-Al-Ag-Fe
		[Twin crocodiles]		side		S S
		2 fragments: reddish	M-FH Lalas & Page	S02 lg frag: from large	4.60.00.0 94.4	sample sent out before EDS
l		(stripped Cu allov?)	Times concerns	head		
1.50					Z 4 0 Z 0 1 Z 0 0	
IVI-50	Cerro Juan Diaz	Argolia de cobre	10 10 10 10 10 10	S01 from open end	/.4U./ 91./ U.2	
		[Ring (copper)]	Contraction (Contraction)			
		green corroded	De Logez			
	- · •	····				
M-59	Cerro Juan Diaz	Cincel	RE EL 28 29 30 31 33	S01 from end		
		[Chisel]				
		reddish (stripped Cu alloy?)	GAUSSED -			
M-67	Cerro Juan Díaz	Cuenta tubular	19 19 12 18 16 50	S01 from center fold	88.5 8.72.00.8	Au-Ag-Cu-Al-Ti
		[Bead, tubular]		S02 Ig piece from edge	91.7 6.01.50.8	Au-Ag-Cu-Fe
		appears gold, uncorroded	M-67 CUENTA TUBUAR			
M-68	Cerro Juan Díaz	l Jnknown		S01 In piece and powder	0 20 0 99.8 0.0	Cu-Al-Pb-Fe
			11 15 10 H 19 19 19 19 30 3			Al-Cu-Fe
		red/arn (part strippd Cu?)	H-Y CONTRACTOR			Al Gu i G
			UNKNOUN			
M-72	Cerro Juan Díaz	Cincel	* * * * *	S01 from end		
		[Chisel]	Lines a	S02 from edge at midpoint		
		reddish (strippd Cu alloy?)				
M-73	Cerro Juan Díaz	Twin animals	40 11 15 13 14 19	S01 from inside	3.30.4 94.0 2.2	sample sent out before EDS
	-	dark brown substrate, gilded	A 18.	S02 from ioin area		sample sent out before EDS
		, , , , , , , , , , , , , , , , , , , ,	M-73 TUN Arrinals			
M-206	Cerro Juan Díaz	Argolla anillo	6 10 11 13 13	S01 from inside open end	77.65.017.30.1	sample sent out before EDS
		[Ring, finger (gold)]				
		appears gold (silverish?)		S02 from outside open end		sample sent out before EDS
AA-01	Abrigo Aclosa	[Disk half]	19 11 18 16 30 31 33 33	S01 Ig piece and powder	62.92.134.80.2	Au-Cu-Aq-Al
	5	appears gold, uncorroded	AA	from corner		Au-Cu-Al-Aa
			ACCOME STATE			5
CL-3-45	Cerro Juan Díaz	Fragmento de oro		fragment from broken edge		Cu-Au-Ag bulk
	1	-				-

MIT 5136	[Fragment, eagle ornament (gold)] appears gold, uncorroded	Free reading of the second sec			Au-Cu-Ag "islands" (2 spots) XRF Au-Cu-Ag (surfaces)
	TOTAL= 39 objects		TOTAL= 32 objects	TOTAL= 25 objects	TOTAL= 18 objects

TOTAL= 39 objects

TOTAL= 32 objects 41 samples 29 samples

TOTAL= 18 objects 20 samples / 30 spots TOTAL/both = 16 objects

Scanning Electron Microscopy-Energy Dispersive X-ray Analysis (SEM-EDS) Roland H. Cunningham

#	Designation	kV	W.D. mm	T/Sec.	Elements Found	Metals Present	Pb	Hg	As	Sb
1.	AA-01 S01 DISCO/TEST	25	39	120	$\begin{array}{l} Au > Cu > Ag \\ Al > C > O > Si > N \end{array}$	Au > Cu > Ag > Al				
1a.	AA-01 S01 DISCO	25	39	120	$\begin{array}{l} Au > Cu > Al > Ag \\ C > Si > O > Mg > N \end{array}$	Au > Cu > Al > Ag				
2.	M-4.01, 4.02 (gold)	25	39	120	Au > Si > Al $O > Fe > C > N > Ca$	Au > Si > Al > Fe (No Silver or Copper)				
2.a.	M-4.01, 4.02 (corrosion)	25	39	120	$\begin{array}{l} Si > Al > O > Fe > Ca \\ K > Ti > Mg > P > Au > C \end{array}$	Al > Fe > Ti > Au (No Silver or Copper)				
3.	M -7. 01(gold)	25	39	120	$\begin{array}{l} Au > Ag > Cu > Ti \\ C > Si > O > Al > N \end{array}$	Au > Ag > Cu > Ti > Al				
4.	M-9.S01 Brown/Green Sides	25	39	120	$\begin{array}{l} Cu > Si > O > Al > Fe > P > Ca \\ > Zn \\ K > Pb > Mg > Ti > C > Cl > S \end{array}$	Cu >Al > Fe > Zn > Pb > Ti (No Gold or Silver)	X			
4a.	M-9.S01 (Sortija) -Brown Side	25	39	120	$\begin{array}{l} P > Si > Mg > Fe > Cu > Ti > \\ Cl > Ca > Al > O > K \end{array}$	Fe > Cu > Ti > Al (No Gold or Silver)				
4b.	M-9.S01 (Sortija) -Green Side	25	39	120	$\begin{array}{l} Cu > P > Ca > O > Fe > Si > \\ Zn > Pb > K > Al > Cl > Mg \end{array}$	Cu >Fe > Zn > Pb >Al (No Gold or Silver)	X			
5.	M-35-1.S01- Cuenta tabular	25	39	120	$\begin{array}{l} Cu > Au\\ Si > Al > O > Ag > Fe > C > Ca\\ > Ti > Mg \end{array}$	Cu > Au > Ag > Fe > Ti				
5a.	M-35-1.S01- Cuenta tabular (Corrosion)	25	39	120	$\begin{array}{l} Si > Al > O > Fe > Au > Cu \\ Ca > Ti > K > C > Ag > Mg \end{array}$	Al > Fe > Au > Cu > Ti > Ag				
6.	M-11.S01 - Cuenta	25	39	120	$\begin{array}{l} Au > Ag\\ Si > O > N > C > Ca > Al > Cu \end{array}$	Au > Ag > Al > Cu				
7.	M.68.S01- Unknown Fragment	25	39	120	$\begin{array}{l} Cu > Al > O > Ca > C > Mg \\ Pb > Si > P > Cl > Fe > S > K \end{array}$	Cu > Al > Pb > Fe (No Gold or Silver)	X			
7a.	M.68.S01- Unknown Fragment (re-run at 30 kV)	30	39	120	$\begin{array}{l} Al > Cu > Mg > \ Fe > O > C > \\ Mn \end{array}$	Al > Cu > Fe (No Gold or Silver)				

#	Designation	kV	W.D	T/Sec.	Elements Found	Metals Present	Pb	Hg	As	Sb
8.	M-24.S01. Cincel- Brown Powder	25	39	120	$\begin{array}{l} Si > O > Al > Cu > Ca > Fe \\ P > Mg > C > K > Ti > Cl \end{array}$	Al > Cu > Fe > Ti (No Gold or Silver)				
8a.	M-24.S01. Cincel- Red particles	25	39	120	$\begin{array}{c} Cu > Cl > C > O > Al > Si > \\ Co > K > Mg > Ti > Ca \end{array}$	Cu > Al > Co > Ti (No Gold or Silver)				
8b.	M-24.S01; Cincel- Green particles	25	39	120	$\begin{array}{c} Cu > Si \\ Pb > C > Al > Ca > P > Mg > \\ Fe \end{array}$	Cu > Pb > Al > Fe (No Gold or Silver)	X			
9.	M-54.S01 – Cocodrilos gamelos	25	39	120	$\begin{array}{c} Cu > Cl > O > C\\ Au > Al > S > Si > Ca > Ag >\\ Fe \end{array}$	Cu >Au > Al > Ag > Fe				
10.	M-13.S02 - Envoltura	25	39	120	$\begin{array}{l} Au\\ Ag > Si > Al > O > Cu > N >\\ C > Fe > Ca \end{array}$	$\begin{array}{c} Au > Ag > Al > Cu > \\ Fe \end{array}$				
11.	M-54.S02 – Cocodrilos gamelos	25	39	120	SAMPLE SENT OUT BEFORE EDS ANALYSIS					
12.	M-13.S01 - Envoltura	25	39	120	$\begin{array}{c} Au\\ Si > Al > O > C > N > Ti \end{array}$	Au > Al > Ti (No Copper or Silver)				
13.	M-14.S01- Envoltura	30	39	120	$\label{eq:alpha} \begin{array}{l} Au \\ Ti > C > Si > N > Ag > Al > \\ Fe \end{array}$	Au > Ti >Ag > Al > Fe (No Copper)				
14.	M-35-3.S01 – Cuenta Tabular	25	39	120	SAMPLE SENT OUT BEFORE EDS ANALYSIS					
							1			

#	Designation	kV	W.D .mm	T/Sec.	Elements Found	Metals Present	Pb	Hg	As	Sb
15.	M-73.S01 – Animales gamelos	25	39	120	SAMPLE SENT OUT BEFORE EDS ANALYSIS					
16.	M-206.S01 , M-206.S02 Argolla anillo	25	39	120	SAMPLE SENT OUT BEFORE EDS ANALYSIS					
17.	M-73.S02 – Animales gamelos	25	39	120	SAMPLE SENT OUT BEFORE EDS ANALYSIS					
18.	M-6.S01 – Alambre de metal	25	39	120	SAMPLE SENT OUT BEFORE EDS ANALYSIS					
19.	M-35-2.S01- Has Copper !	30	39	120	$\begin{array}{l} Cu > Au\\ Si > Al > O > Fe > C > Th >\\ Ag > Ca \end{array}$	Cu > Au > Al > Fe > Th > Ag				
20.	M-28-1.S01- Cuenta Tabular	20	39	120	$\begin{array}{l} Au > Cu \\ Ag > N > C > Si > Ti \end{array}$	Au > Cu > Ag > Ti				
21.	M-5.S01- Cuenta Tubular de Oro	30	39	120	$\begin{array}{c} Au\\ Al > C > N > Si > V > O > Ca \end{array}$	Au > Al > V (No Copper or Silver)				
22.	M-67.S02- One piece and powder	20	39	120	$\label{eq:alpha} \begin{array}{l} Au\\ Al > Ag > Si > Cu > C > O > N\\ > Fe > Mg > Ca \end{array}$	Au > Ag > Cu > Fe				
23.	M-28-2.S01- From the edge	20	39	120	$\begin{array}{l} Au > Cu \\ Al > Ag > C > Si > V > N \end{array}$	Au > Cu > Al > Ag				
24.	M-67.S01 Cuenta Tabular	20	39	120	$\label{eq:alpha} \left \begin{array}{c} Au \\ Ag > Cu > C > Al > Ti > N > \\ Si \end{array} \right $	Au > Ag > Cu > Al > Ti				
25.	M-3.S01- Cuenta de pirita	20	39	120	$\label{eq:second} \begin{array}{l} Fe > S\\ Si > O > Ca > Al > P > C >\\ Mg > Na \end{array}$	Fe > Al Ferric Sulfide or Sulphate ?				

Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) Robert J. Speakman

Laser Ablation ICP-MS Analysis of Cu and Au Alloys from Cerro Juan Diaz, Panama

Report Prepared by:

Robert J. Speakman Archaeometry Laboratory University of Missouri Research Reactor Center Columbia, MO 65211

Samples Submitted by:

Dr. Paula DePriest & Ms. Karla Muñoz Alcocer Smithsonian Institution, Museum Conservation Institute Museum Center Room D2002 4210 Silver Hill Road Suitland MD 20746-2863

July 14, 2006

INTRODUCTION

Researchers at the Smithsonian Institution Museum Conservation Institute in collaboration with archaeologists at the Smithsonian Institution Tropical Research Institute are investigating the chemical compositions of Cu and Au alloys in archaeological materials excavated from Cerro Juan Diaz—a site located near Parita Bay on Panama's central Pacific coast. Excavations at Cerro Juan Diaz have been ongoing since 1992, and researchers anticipate that data obtained from this site can contribute to a better understanding of social and economic relationships in the region between 200 B.C. and 1600 A.D. To facilitate this study, small scrapings obtained from metal artifacts excavated at Cerro Juan Diaz were analyzed at the University of Missouri Research Reactor Center by laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS).

DESCRIPTION OF LASER ABLATION ICP-MS

In recent years, laser-ablation (LA) systems coupled to state-of-the-art inductivelycoupled-plasma mass-spectrometers (ICP-MS) have gained increased popularity in archaeological science for chemical analyses of a variety of inorganic and organic matrices. In archaeology, LA-ICP-MS has facilitated research concerning provenance, trade, and technology through the analysis of metals, rocks, ceramics, pigments, and other archaeological materials (1-10). In addition, analyses of human teeth and bone by this technique have been used to make inferences regarding nativity (11, 12) and diet (13). LA-ICP-MS also has been used in attempts to identify chemical signatures in archaeological wood samples that might be useful for dating prehistoric volcanic eruptions (14, 15).

As an ICP-MS sample introduction technique, laser ablation provides a viable alternative for ICP-MS characterization studies that traditionally have required digestion of solid samples using a combination of heat and/or strong acids—a time consuming and unpleasant task. Laser ablation was first applied to ICP in the late 1970s (16), but it was not until the mid-1980s that a laser ablation system was coupled to an ICP mass spectrometer (17). The coupling of laser-ablation with ICP-MS has resulted in the development of extremely sensitive microprobes capable of determining most elements of the periodic table. LA-ICP-MS offers several advantages over other analytical methods, including high accuracy and precision, low detection limits, rapid analytical time, low cost per sample, high sample throughput, and minimal damage to the sample. The range of materials that can be characterized by LA-ICP-MS (rocks, ceramics, glasses, pigments, fauna and other organics) and types of analyses (bulk, surface, and microprobe) are unsurpassed by most other analytical techniques. The fact that in situ analyses can be conducted by LA-ICP-MS suggests less chance of contamination resulting from sample preparation in that the sample remains intact within its original matrix until the analysis. Although potential problems exist with data calibration, spectral interferences, and fractionation, these problems can be ameliorated such that any negative impacts to the analysis are minimized. LA-ICP-MS has tremendous potential for providing chemical characterizations of archaeological materials, permitting questions regarding, prehistoric production, trade, interaction, and manufacturing technology to be addressed

The instrument used in the study reported here is a Thermo Elemental Axiom magnetic-sector inductively coupled plasma mass spectrometer coupled to a Merchantek Nd:YAG 213-nm wavelength laser ablation unit. The laser can be targeted on spots as small as 5 µm in diameter. The small spot size and the high sensitivity of magnetic-sector ICP-MS to a wide range of major, minor, and trace elements make LA-ICP-MS a very powerful microprobe. Moreover, laser ablation is virtually non-destructive to most samples considering that the ablated areas are often indistinguishable with the naked eye. Unlike instrumental neutron activation analysis (INAA), X-ray fluorescence (XRF), or ICP-MS of solutions which produces a bulk elemental characterization of the entire matrix, LA-ICP-MS provides a point specific characterization of the ablated area of the sample. Relatively homogeneous samples, such as obsidian and to a certain extent metals, cherts, paints, and glazes, are ideally suited for LA-ICP-MS given that spatial variation is minimal in these materials. ICP-MS can generate compositional data for 50-60 elements, whereas, other techniques typically generate compositional data for about 30 (or less) different elements. Some elements such as lead and phosphorus which cannot be measured by INAA but can be measured by LA-ICP-MS may prove important for separating materials into different compositional groups. For many elements LA-ICP-MS has lower detection limits than other instrumental techniques (e.g., Sr, Sb, Ba, and Zr).

In LA-ICP-MS, the sample is placed inside a sample holder or laser cell where ablation takes place. Ablation areas vary in size depending on the sample matrix, but the analyzed area is usually smaller than 500 X 500 µm and less than 30 µm deep. During analysis, the laser beam ablates (or vaporizes) the area of interest on the sample. The ablated material is transported from the laser cell using a 0.9-1.5 l/min. flow of argon and/or an argon/helium/nitrogen-mixed carrier gas through Tygon tubing and introduced into the ICP-MS torch, where argon gas plasma capable of sustaining electron temperatures between 8000 and 10,000 K is used to ionize the injected sample. The resulting ions pass though a two-stage interface (sample and skimmer cones) designed to enable the transition of the ions from atmospheric pressure to the vacuum chamber of the ICP-MS system. Once inside the mass spectrometer (in this case a high-resolution magnetic sector ICP-MS), the ions are accelerated by high voltage and pass through a series of ion optics, an electrostatic analyzer (ESA), and finally a magnet. By varying the strength of the magnet, the ions are separated according to mass/charge ratio and passed through a slit into the detector, which records only a small atomic mass range at a given time. By varying the magnet and flight-tube settings, the entire mass range can be scanned within a relatively short time.

LASER ABLATION ICP-MS SAMPLE PREPARATION

Laser ablation ICP-MS requires little sample preparation other than resizing the sample to fit inside the sample chamber which was not necessary for this study. For this analysis, metal fragments were mounted to a standard microscope slide using double-sided tape.

LASER ABLATION ICP-MS ANALYTIC PARAMETERS

Prior to data acquisition, the instrument is turned-on and permitted to warm-up for a minimum of one hour. Allowing the instrument to warm-up permits the internal components to reach their optimum operating temperature, greatly reducing instrument noise and drift. After an hour or so, a glass standard (NIST SRM 612, a glass wafer spiked with 60+ elements) was placed in the laser chamber and continuously ablated to produce a signal that permits the instrument settings to be adjusted so that sensitivity is maximized while noise is minimized. After tuning the instrument, data for a blank and four gold standards were generated. Following measurement of the standard data, the samples were placed in the laser cell and analyzed. Data for additional standards were collected midway through the analysis and at the conclusion of the analysis.

In order to compensate for the issues surrounding the determination of the best laser power settings, we tune the ICP-MS to maximize signal intensity then adjust the laser power settings to bring the signal up or down to a predetermined count rate depending on the sample matrix—usually 400,000–8,000 counts per second of indium on NIST SRM 612 using a 100-micron-diameter beam operating at 20 Hz, scanning along a line at a speed of 30 microns per second.

For the actual analysis of the metals, ablation parameters were identical for all unknowns and standards analyzed. The laser was operated using a 15-micron-wide beam, operating at 20 Hz, scanning along a line at a speed of 30 microns per second. The laser beam was permitted to pass over the ablation area twice prior to data acquisition to remove minimize the effects of surface contamination, to permit time for sample uptake, and to permit time for the argon gas plasma to stabilize after the introduction of the ablated material. Our experiments at MURR have demonstrated that pre-ablation permits the laser to couple better with the sample matrix. Each sample was analyzed three times each for Fe, Mn, Ni, Cu, Zn, Ag, Os, and Au; the resulting data from each analysis were averaged.

NORMALIZATION AND STANDARDIZATION OF DATA

A basic problem in LA-ICP-MS is that it is difficult to monitor the amount of material removed by the laser and transported to the ICP. Conditions such as hardness of

the material, position of the sample in the laser chamber, whether or not the surface of the artifact is flat, and other conditions clearly affect how much material reaches the ICP torch and thus the intensity of the signal monitored for the various atomic masses of interest. In addition, instrumental drift in the ICP-MS over several hours or days affects count rates.

The normalization approach used at MURR follows that suggested by Gratuze and others (4, 6). The basic assumption of the Gratuze approach is that the elements being measured represent essentially all of the major constituents contained within the analyzed material. Data generated from the analysis, expressed as counts per second, are then ratioed to an internal *standard* (in this case Au) to normalize for different count rates between samples and standards. Quantitative data are then obtained by comparing the normalized signal in the unknown samples to the normalized signals for the standard reference materials (BCR8079 and three in-house gold standards (18K, 14K, and 10K)). The resulting element concentrations are then normalized to 100%.

RESULTS

Although eight elements (Fe, Mn, Ni, Cu, Zn, Ag, Os, and Au) were measured in each of the archaeological samples Mn, Ni, Zn, and Os were consistently below detection limits. All samples were analyzed in a random order.

Tables 1 and 2 list the expected and measured concentrations determined for the four gold standards. Table 3 lists the concentrations measured for the 29 samples that were large enough to be analyzed. As expected, all of the samples have measurable concentration of Cu, Au, and Ag. Additionally, most of the samples contained minor quantities of Fe which may represent contamination from scarping the artifacts to obtain the sample. Three anomalous artifacts contained high concentrations of iron and should be disregarded from any interpretation of the data.

Although it was possible to analyze the specimens by LA-ICP-MS, long-term analyses of high-concentration metals by ICP-MS is, in general, not a good idea given that it can lead to high background levels in the instrument. Additionally, LA-ICP-MS is a microprobe technique, and as such, the analysis is focused on a relatively small area of the sample (in this case 15 microns). In at least two samples different metal phases (or inclusions) were observed in the ablation chamber (e.g., light colored and dark colored inclusions or phases). In general it would seem that future analyses would be best served by x-ray fluorescence which analyzes a larger area on a given surface. Despite potential problems with heterogeneity, several samples that had two aliquots (e.g., M-4, M-67) produced very comparable results indicating that heterogeneity may not be too big of an issue for some of the samples.

	Cu (%)	Au (%)	Ag (%)
BCR-8079	(5)	15	80
SRM8079-1	6.6	14.3	79.1
SRM8079-2	4.5	14.6	80.9
SRM8079-3	5.2	13.9	80.8
SRM8079-4	5.3	14.9	79.7
SRM8079-5	6.1	11.4	82.3
SRM8079-6	5.4	16.3	78.2
Mean	5.5	14.2	80.1
Std Dev	0.7	1.6	1.5

Table 1. Comparison of certified values (in bold) for BCR8079 and values obtained by LA-ICP-MS.

Table 2. Comparison of expected values (in bold) for 3 noncertified gold standards (reported values measured by XRFand ICP) and values obtained by LA-ICP-MS.

	Fe (%)	Cu (%)	Zn (%)	Ag (%)	Au (%)
18K	0.1	10.37	0.1	14.5	75.03
18K	0.5	8.9	0.2	13.4	77.0
18K	0.1	10.1	0.1	15.4	74.2
14K	0.1	28.64	5.74	7.26	58.39
14K	0.1	25.5	6.1	5.6	62.7
14K	0.0	26.8	5.8	5.8	61.6
10K	0.1	30.72	11.58	n/a	42.06
10K	0.1	25.3	13.7	0.0	44.3
10K	0.0	27.2	14.2	0.0	42.9

Cat no.	Object Description	Fe (%)	Cu (%)	Ag (%)	Au (%)
AA-01.S01	Small Disk	0.2	34.8	2.1	62.9
M-04-01	laminated ore fragment	0.5	1.9	4.0	93.6
M-04-02	laminated ore fragment	0.3	1.3	3.9	94.5
M-05.S01	Cuenta Tabular de Oro	0.3	3.3	10.7	85.7
M-07.S01	Lamina de Oro	0.6	2.2	8.3	88.9
M-09.S01	Sortija, Quizas Colonial	0.3	3.5	5.9	90.4
M-11.S01	Cuenta	0.8	0.4	10.8	88.0
M-13.S01	Envoltura	0.4	2.3	6.9	90.5
M-13.S02	Envoltura	0.1	2.7	3.8	93.3
M-14.S01	Envoltura	0.5	0.4	8.6	90.4
M-15.S01	Cincel	0.2	99.1	0.3	0.5
M-206.S01	Argolla Anillo	0.1	17.3	5.0	77.6
M-27.S01	Argolla Nariguera	0.2	0.1	6.3	93.4
M-28-1.S01	Cuenta Tabular	0.3	44.5	4.7	50.6
M-28-2.S01	Cuenta Tabular	0.0	31.4	4.5	64.1
M-35-1.S01	Cuenta Tabular	0.0	41.4	0.9	57.7
M-35-2.S01	Cuenta Tabular	0.1	28.2	0.8	71.0
M-35-3.S01	Cuenta Tabular	1.7	3.3	7.7	87.2
M-35-7.S01	Cuenta Tabular	1.4	4.3	7.4	87.0
M-42.S01	Cincel	0.2	98.8	0.3	0.8
M-54.S01	Colgante Bicefalo Cocodrilos Gemelos	0.1	77.6	1.2	21.1
M-56.S01	Argolla de Cobre	0.2	91.7	0.7	7.4
M-67.S01	Cuenta Tabular	0.8	2.0	8.7	88.5
M-67.S02	Cuenta Tabular	0.8	1.5	6.0	91.7
M-68.S01	Unknown Fragment	0.0	99.8	0.0	0.2
M-73.S01	Animales Gemelos	2.2	94.0	0.4	3.3
Contaminated	Samples?				
M-02.S01	Cuenta de Pirita	100.0	0.0	0.0	0.0
M-24.S01	Cincel	92.5	7.4	0.0	0.0
M-54.S02	Colgante Bicefalo Cocodrilos Gemelos	94.4	0.0	0.0	4.6

Table 3. Descriptive information and values obtained from LA-ICP-MS analysis of theCerro Juan Diaz metal objects.

Acknowledgements: Purchase of the laser ablation system and ICP-MS was funded, in part, by a grant from the National Science Foundation (SBR-9977237). Operating support for the MURR Archaeometry lab is supported in part by a grant from the National Science Foundation (0405042).

REFERENCES

- 1. Devos, W.; Moor, C.; Lienemann, P., Determination of impurities in antique silver objects for authentication by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). *J. Anal. At. Spectrom.* **1999**, 14, (4), 621-626.
- 2. Devos, W.; Senn-Luder, M.; Moor, C.; Salter, C., Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for spatially resolved trace analysis of early-medieval archaeological iron finds. *Fresenius J. Anal. Chem.* **2000**, 366, (8), 873-880.
- 3. Kennett, D. J.; Neff, H.; Glascock, M. D.; Mason, A. Z., A geochemical revolution: Inductively coupled plasma-mass spectrometry. *The SAA Archaeological Record* **2001,** 1, (1), 22-36.
- Neff, H., Analysis of Mesoamerican Plumbate pottery surfaces by laser ablationinductively coupled plasma-mass spectrometry (LA-ICP-MS). J. Archaeol. Sci. 2003, 30, (1), 21-35.
- 5. Pollard, A. M.; Heron, C., *Archaeological Chemistry*. Royal Society of Chemistry: Cambridge, 1996.
- 6. Gratuze, B., Obsidian characterization by laser ablation ICP-MS and its application to prehistoric trade in the Mediterranean and the Near East: Sources and distribution of obsidian within the Aegean and Anatolia. *J. Archaeol. Sci.* **1999**, 26, (8), 869-882.
- 7. Gratuze, B.; Blet-Lemarquand, M.; Barrandon, J. N., Mass spectrometry with laser sampling: a new tool to characterize archaeological materials. *J. Radioanal. Nucl. Chem.* **2001**, 247, (3), 645-656.
- 8. James, W. D.; Dahlin, E. S. C., D.L., Chemical compositional studies of archaeological artifacts: comparison of LA-ICP-MS to INAA measurements. *J. Radioanal. Nucl. Chem.* **2005**, 263, (3), 697-702.
- Mallory-Greenough, L. M.; Greenough, J. D.; Dobosi, G.; Owen, J. V., Fingerprinting ancient Egyptian quarries: preliminary results using laser ablation microprobe -- inductively coupled plasma -- mass spectrometry. *Archaeometry* 1999, 41, (2), 227-238.
- Speakman, R. J.; Neff, H.; Glascock, M. D.; Higgins, B. J., Characterization of archaeological materials by laser ablation--inductively coupled plasma--mass spectrometry. In *Archaeological Chemistry: Materials, Methods, and Meaning*, Jakes, K. A., Ed. American Chemical Society: Washington, DC, 2002; Vol. No. 831, pp 48-63.
- 11. Cucina, A.; Neff, H.; Blos, V. T., Detecting provenience of African-origin individuals in the colonial cemetery of Campeche (Yucatan): a new approach using trace elements and LA-ICP-MS. In *Laser Ablation ICP-MS in Archaeological Research*,

Speakman, R. J.; Neff, H., Eds. University of New Mexico Press: Albuquerque, NM, 2005; pp 187-197.

- 12. Dolphin, A. E.; Goodman, A. H.; Amarasiriwardena, D., Variation in elemental intensitities among teeth and between pre- and postnatal regions of enamel. *Am. J. Phys. Anthropol.* 2005, 127.
- 13. Song, R.-J. Ph.D. thesis, University of Massachusetts, Amherst, MA, 2004.
- 14. Pearson, C.; Manning, S. W.; Coleman, M.; Jarvis, K., Can tree-ring chemistry reveal absolute dates for past volcanic eruptions? *J. Archaeol. Sci.* **2005**, 32, (8), 1265.
- 15. Sheppard, P. R.; Ort, M.; Speakman, R. J.; Anderson, K.; Elson, M., Dendrochemical Analysis of Trees Affected by the Paricutin Eruption with Implications for Re-Analyzing the Sunset Crater Eruption. In *Geological Society of America Abstracts with Programs*, Salt Lake City, 2005; Vol. 37 (7), p 111.
- 16. Ambercrombie, F. N.; Silvester, M. D.; Murray, A. D.; Barringer, A. R., A New Multielement Technique for the Collection and Analysis of Airborne Particulates in Air Quality Surveys. In *Applications of Inductively Coupled Plasmas Emission Spectroscopy*, Barnes, R. M., Ed. Franklin Institute Press: Philadelphia, 1978; p 121– 145.
- 17. Gray, A. L., Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. *Analyst* **1985**, 110, (5), 551-556.

X-ray Fluorescence Spectroscopy (XRF) of CL-3-45 Aaron N. Shugar

Date	Reading	Realtime (sec)	LiveTime (sec)	Mode	Cu	Ag	Pt	Au
13-Jul-06	Side1	90	73.73	Analytical	54.08	2.43	BDL	43.49
13-Jul-06	Side1	90	73.95	Analytical	54.16	2.56	BDL	43.27
13-Jul-06	Side 1	300	251.39	Analytical	54.94	2.93	BDL	42.13
13-Jul-06	Side 2	90	74.31	Analytical	48.52	3.75	BDL	47.74
13-Jul-06	Side 2	300	250.58	Analytical	50.23	3.52	BDL	46.25

Cu	+/- Ag	g +/-	Pt +/-	Au +/-
0.1	8 0	.05		0.48
0.1	8 0	.05		0.48
0.1	7 0	.06		0.51
0.0	9 0	.03		0.27
0.	10	.03		0.27

2.41	ND	43.05	98.99
2.56	ND	43.19	99.81
3.71	ND	47.29	99.06
3.47	ND	45.62	98.63
2.9	ND	41.63	98.82
	2.41 2.56 3.71 3.47 2.9	2.41ND2.56ND3.71ND3.47ND2.9ND	2.41ND43.052.56ND43.193.71ND47.293.47ND45.622.9ND41.63

Instrument specifications

Innov-X handheld ED-XRF (portable) *Features*: miniature X-ray tube (10-40kV, 10-100µA), silver anode, silicon pin diode detector, with preset conditions and calibration curves *Modes*: soil mode with light element analysis program (LEAP) settings, which optimize the instrument to look at elements lighter than Fe (K, Ca, Ti, Cr, Mn, Ba), using built-in X-ray tube beam settings Scanning Electron Microscopy-Energy Dispersive X-ray Analysis (SEM-EDS) of CL-3-45 metallographic cross-section Roland H. Cunningham

ANALYSIS

Object(s):	Gold Fragment: CL-3-45. MIT-5136
Artist/Manufact	urer: Unknown
Geog./Cult. Sour	rce: Panama
Material(s):	Gold colored fragment, possible gold alloy or mixture. Approximate overall dimensions: ca. 12 mm L x 25 mm x 1 mm thick.
Object Date:	Unknown
Requestor:	Republic of Panama
Date In: 8	/01/06
Completed: 9.	/30/06

Requested Action: EDS Analysis, Secondary and Backscattered SEM imaging.

Procedure:

- A section of sample the sample approximately 3.1 mm wide x 6.0 mm deep x 1mm thick was removed using the Buehler Isomet low-speed saw and di-ionized water as a lubricant.
- After ultrasonic cleaning and drying in methanol, the sample was embedded in Buehler Epo-Thin low viscosity epoxy.
- After 12 hours curing time, the embedded sample was sectioned into two approximate halves with the Buehler Isomet low-speed saw . Di-ionized water was again used as a cutting fluid.
- After sectioning. One half of the embedded section was next ground and polished using the Buehler Minimet polishing system.
- Due to minor charging caused by the embedding plastic, the cross-section was carbon coated to increase conductivity under the electron beam. The coating was applied with an Edwards E306A Vacuum Coating Unit.

EDS Analysis:

The examination was broken down as follows:

- Section A, SEM/EDS analyses and imaging of the sample's matrix material and estimated element weight percent for major elements detected.
- Section B, SEM/EDS analyses and imaging of the sample's bright phase material and estimated element weight percent for major elements detected.
- Section C, SEM/EDS analyses and imaging of (6) randomly picked inclusions embedded within the sample's matrix and estimated element weight percent for major elements detected. (see EDS spectra and Excel work sheets enclosed).
 - All SEM/EDS data were collected at 25 kV for 120 seconds at a working distance of 39mm. The Magnification used was 5000X.
 - A series of (10) EDS analyses were run on the cross-section's matrix material.
 - A series of (10) EDS analyses were run on the cross-section's bright phase material.
 - A series of (18) EDS analyses were run for (9) inclusions.

• The instrument used was a JEOL JXA-840A Scanning Electron Microscope (SEM) with a ThermoNORAN TN-5502 energy dispersive analytical attachment and, NORAN Vantage spectrum processing software. The system is also fitted with a low atomic number detector (Pioneer Premium detector with a Norvar window).

Photography:

- (18) SE and backscattered SEM image details were taken of the cross-sectioned sample.
- (9) SE and backscattered SEM image details were were taken of inclusions in the matrix.

Roland H. Cunningham Sr. Paintings Conservator/Analytical Support Gp. SCMRE

Bibliography

"The Forensic Examination of Paints & Pigments" Crown, D.A. 1968: Charles C. Thomas, Pub.

" SEM: A Users Manual for Materials Science " Gabriel, Barbara A. 1985: American Society for Metals

"Scanning Electron Microscopy & X-Ray Analysis" J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, et al. N.Y.: 1992: 2nd Edition Plenum Press:

SECTION A

SEM/EDS Analysis and Imaging

Gold Cross-section

Matrix Material

6043

EDS ANALYSIS

Cl-3-45 (MIT-5136)

Gold Cross-Section - Matrix Material

25kV

Working Distance = 39mm

5000X

Gold Cross-Section

Cl-3-45 (MIT-5136) Matrix Material (probes 1-10)

Work Sheet: Estimated Weight Percent/Element

Estimated Element Wt/%

Accelerating Voltage: 25KeV Take Off Angle: 58.3506°

6043:Gold Section: Cl-3-45(MIT-5136) 1

Live Time: 120 seconds

Dead Time: 34.098 seconds

Thermo NORAN

Fri Jul 28 15:57:10 2006

6043:Gold Section: Cl-3-45(MIT-5136) 1 Refit _Si-K' _Si-K" Filter Fit Method Chi-sqd = 2.29 Livetime = 120.0 Sec. Standardless Analysis Error Element Relative Error Net k-ratio Counts (1-Sigma) (1-Sigma) 2744 +/-C-K - - -- - -67 _ _ _ _ _ _ 24732 +/-Cu-L 211 Si-K 0.00105 +/- 0.00017 551 +/-87 --- ---43863 +/-446 Au-M Ag-L0.01013 +/- 0.00135Cu-K0.62396 +/- 0.00482 333 596 2492 +/-77230 +/-Au-L 0.36486 +/- 0.00892 22087 +/-540 K L Adjustment Factors М Z-Balance: 0.00000 0.00000 0.00000 Shell: 1.00000 1.00000 1.00000 PROZA Correction Acc.Volt.= 25 kV Take-off Angle=58.35 deg Number of Iterations = 5

Element	k-ratio	ZAF	Atom %	Element	Wt % Err.
	(calc.)			Wt %	(1-Sigma)
Si-K	0.0010	1.837	0.61	0.19	+/- 0.03
Ag-L	0.0100	1.458	1.22	1.46	+/- 0.19
Cu-K	0.6158	0.901	78.59	55.49	+/- 0.43
Au-L	0.3601	1.190	19.59	42.87	+/- 1.05
Total			100.00	100.00	

Fri Jul 28 15:56:01 2006

6043:Gold Section: Cl-3-45(MIT-5136) 1

Livetime : 120.0 Sec. Technique: Least Squares Fit

Elements Present: C(6), Si(14), Cu(29), Au(79) Possible Additional Elements: Ag(47), Rb(37)

Energy	Intensity	Element	Element
(keV)	(counts)	Present	Possible
0.273	2499	C Ka	
0.937	21397	Cu Lal	
1.683	668	Si Ka	
2.157	37491	Au Mal	
2.443	925	Au Mg	
*2.999	1213		Ag Lal
8.036	73278	Cu Kal	
8.486	700	Au Ll	
8.897	9728	Cu Kbl	
9.697	13556	Au Lal	
11.450	4200	Au Lb1	
*13.371	1266	Au Lg1	
		3075	Dh Kal

Rb Kal

* Check peak labels manually, or acquire additional data for better statistics and re-run Automatic Ident.

SECTION B

SEM/EDS Analysis and Imaging

Gold Cross-section

Bright Phase Material

6043

EDS ANALYSIS

Cl-3-45 (MIT-5136)

Gold Cross-Section - Bright Phase Material

25kV Working Distance = 39mm 5000X

Gold Cross-Section Backscatter Photo Cl-3-45 (MIT-5136) Bright Phase Material (probes 1-5)

Gold Cross-Section Backscatter Photo Cl-3-45 (MIT-5136) Bright Phase Material (probes 6-9)

Gold Cross-Section Backscatter Photo Cl-3-45 (MIT-5136) Bright Phase Material (probe 10)

Project: CI-3 (Brig			•	PROBE	2 58	3 52	4 46	5 55	6 57	7 47	8 7	9 47	10	55
-45 (MIT-5136) yht Phase Mate		1 2	u-L Cu-K	7 81 36 81	3.27 38.57	1.89 42.9	6.71 34.74	5.87 41.28	7.99 39.29	7.83 35.35	1.21 26.56	7.82 38.2	37 30.2	55.4 363.9
rial)	ELEN	ω	Ag-L	1 83	2.44	1.8	1.79	2.08	2.17	2.02	1.98	1.49	2.57	20.17
MCI #:	IENT WEI	4	Ni-K		0.59	•		0.45	0.39	0.3	•		•	1.73
6043	SHT PERCI													
kV:	ENTAGES													
25	FOR ELEN													
W.D.:	NENTS DE													
39 mm	TECTED													
Mag.:														
5000X														

Estimated Element Wt%

Work Sheet: Estimated Weight Percent/Element

SECTION C

SEM/EDS Analysis and Imaging

Gold Cross-section

Random Inclusion Sites in Matrix Material

6043

EDS ANALYSIS

Cl-3-45 (MIT-5136)

Gold Cross-Section - Inclusions (1a-1c)

25kV

Working Distance = 39mm

30,000-70,000 X

CI-3-	6043:
45 (D	Gold
MIT 5	Sect
5136)	ion

kV : 25 W.D.mm: 39 T/Sec.: 120 sec. 30,00-70,000X

INCLUSIONS

6c	6b	6a	5c	Sb	5a	40	46	+a	40	3c	3b	3a	2c	2b	2a	1c	Ib	la	Probe	
	1	1		1	,			1.11	717		1		•	1	i.	1	9.08	8.54	Na-K	
1.57	1.52	•	r	0.52	0.43							1	•		1.16		•		Ag-L	
r	I	1	1	0.39	0.49				•		1.43		1	1	•	,	1	r	CI-K	
0.48	0.29	0.96	1.56	0.36	1.36		0.12	CF 0		0.43	0.40	0.23	1.17	1.02	1	2.03	1.69	2.42	Mg-K	
5.17	3.75	6.62	6.76	8.06	6.23	13.13	15 15	11 04	20.28	3.85	2.90	4.92	8.68	9.91	8.71	6.85	11.01	10.35	Al-K	
10.63	7.57	13.74	12.14	10.08	10.86	07.10	20.67	20.20	32.14	21.76	14.94	28.22	23.59	23.62	18.41	24.36	29.74	30.48	Si-K	
1	r	0.18		1	•	10.74	10 04	11 56	9.57	0.37	0.39	0.68	0.65	1.38	0.99	3.46	5.26	5.03	K-K	
2.29	1.60	2.73	3.41	1.51	3.44	2.01	3 3 1	L> V	5.61	0.94	2.17	1.16	9.65	7.17	3.17	13.70	11.81	10.21	Ca-K	
	1	0.29	0.26	1	Ĩ	0.20	10.0	72 0	č	•			,	0.39	T	0.43	0.54	0.59	Ti-K	ELEMEN
1.55	1.65	5.78	3.43	3.51	2.94	1.75	1 53	4 20	1.81	4.49	3.99	5.69	4.66	5.27	3.82	5.24	5.95	6.72	Fe-K	IT Wt. %
54.28	53.75	50.41	54.08	54.17	51.04	21.01	21 87	13 74	12.12	58.37	60.58	45.45	36.13	32.92	41.94	13.27	7.70	8.83	Cu-K	0
2.90	4.43	3.81	r	5.20	4.79		5 44	16 87	7.30	1	3.84	1	4.81	12.17	7.58	13.59	14.74	13.78	Pb-L	
21.14	25.44	15.48	18.38	16.21	18.41	0.10	305	4 55	4.00	9.78	9.37	12.39	10.65	6.16	14.21	5.40	2.48	3.03	Au-L	
	1	1		•	,				•		1	1			1	11.66		1	Zn-L	
1	1	1	,		•				•			1.25		,	1	1	,		As-K	C

25 kV, 120 Secs. Work Sheet - Averaged Intensity (Counts)/Element 6043.1. Inclusions: CI-3-45 (MIT-5136) 20 Secs. Working Distance = 39 mm 30,000 - 70, 000X

S x Ca

Probe

0

0

Na

Мg

A

11989 27887

25123

Pb S 1 Сп Zn

Fe

Ag

Au

10 25 36		Probe 2a 2b 2c	
	State Carlos		
C	11559	C 4138 3845 3576	
°	41351	0 14377 14343 12631	
Z		· · · Za	
Mg	0 405	Mg - 1867 2225	
	25010	AI 21152 21058 21058	25
SI CONTRACTOR	77 16305	SI 7 56447 55802	W01 KV, 120 S
The second secon	0 703	K 2605 3046 1379	k Sheet - 6043.2.
Ca Ca	30 4983	Ca 9204 17097 2353	Averaged Inclusions orking Dist
Po Po	35 217	Pb 2997 11745 11282	Intensity : CI-3-45 ance = 39
s	33		(Counts)/f (MIT-513)
	0	6	⊟ement 6) 90,000 -
- Barrent constant	678		- 70,0
C -	154971	Cu 67189 44512 43270	DOX
Zn		Zn	
Fe	0 2547	Fe 7981 9211 8279	
	12	Ag 1202 -	
AE	22 24	At 161- 137 650	
	1062	85 75	
	0		

300 - 200 - 100 - 6 -		Probe 4a 4b 4c
C L	11884	C 3597 4104 4183
0	38420	0 14769 12931 10720
NB	11261	Na 11261 -
MG Contraction	1714	Mg - 1714 0
≥.	132180	25 KV AI 61813 31865 38502
Si anti anti anti anti anti anti anti ant	261111	Work (, 120 Sec 90173 90173 90309 80629
*	101548	Sheet - A 6043.4. Inc s. Work s. Work 22799 35337 43412
Ca	31665	veraged In clusions: C Ca 14336 11774 5555
Pb	51851	utensity (C 1)-3-45 (M ce = 39 m 2 P b 1 2 1 5 2 3 1 1 0 0 8 5 9 9
د. ا	0	- - -
	1117	ment 00 - 70, 0 - 689 428
Cu	62514	cox Cu 14680 19013 28821
2n		Zn
fe	13016	Fe 2487 2373
Ag	0	Ag
- ·	7435	Au 5350 1375 710
	No	

100

H

Photomicrography of CL-3-45 metallographic cross-section Melvin J. Wachowiak

Commentary Aaron N. Shugar

Photographs taken with a Leica DMLM Magnification range: 50x-500x Illumination: transmitted light, bright field and dark field

CL-3-45 cross-section (embedded and polished), bright field illumination: detail showing gold-rich and copper-rich phases and thin gold surface layer

CL-3-45 cross-section (embedded and polished), bright field illumination: detail showing zone of flattened voids just below gold surface layer

CL-3-45 cross-section (embedded and polished), dark field illumination: thin gold surface layers and inclusions are visible

CL-3-45 cross-section (embedded and polished), dark field illumination: detail of inclusion

CL-3- cross-section (embedded, polished and etched): different alloy phases are visible, particularly in the zone adjacent to thin gold surface layers

CL-3-45 cross-section (embedded, polished and etched), bright field illumination: detail showing zone of flattened voids just beneath gold surface layer

CL-3-45 cross-section (embedded, polished and etched): detail of surface zone

CL-3-45 cross-section (embedded, polished and etched), bright field illumination: detail showing gold-rich and copper-rich phases